主右投射(简称rpp)半群是一类重要的广义正则半群,首先引入了本原rpp半群的概念,借助广义Green^(l)关系:F^(l),R^(l),H^(l)及L^(l),刻画了本原rpp半群的基本特征,证明了本原rpp半群中的任意非零元α,关于任意s∈S,若Ra(l)∩Е(S)≠Ф且αS≠0,则αs∈Rα(l)∩L5(l).最后,得出了本原rpp半群中Hef(l)和Hfe(l)为S的不含幺元的可消子半群,Hef(l)作为右Hf(l)的右理想同构,作为左He(l)-系与He(l)的左理想同构.
A principal right projective (rpp in short) semigroup is important in the class of generalized regular semigroups.The concept of a primitive rpp semigroup is first introduced. Some basic properties of primitive rpp semigroups were in-vestigated by using the Green(l) - relations:F^(l),R^(l),H^(l)andL^(l)and proved if a is a non-zero element of a primitive rpp semigroup S,s∈S and Ra(l)∩Е(S)≠Ф,then asαs∈Rα(l)∩L5(l)We also showed thatHef(l) and Hfe(l)are left cancellative subgroup of S without identity, and Hef(l)is isomorphic as a semigroup and as a right Hf(l)-system to a right ideal of Hf(l),is isomorphic as a semigroup and as a left He(l)-system to a left ideal of He(l) in a primitive rpp semigroup.