Evidence suggested that glycogen synthase kinase-3β(GSK-3β) is involved in Nogo-66 inhibiting axonal regeneration in vitro, but its effect in vivo was poorly understood. We showed that stereotactic injection of sh RNA GSK-3β-adeno associated virus(GSK-3β-AAV) diminished syringomyelia and promoted axonal regeneration after spinal cord injury(SCI), using stereotactic injection of sh RNA GSK-3β-AAV(tested with Western blotting and RT-PCR) into the sensorimotor cortex of rats with SCI and by the detection of biotin dextran amine(BDA)-labeled axonal regeneration. We also determined the right position to inject into the sensorimotor cortex. Our findings consolidate the hypothesis that downregulation of GSK-3β promotes axonal regeneration after SCI.
Evidence suggested that glycogen synthase kinase-3β(GSK-3β) is involved in Nogo-66 inhibiting axonal regeneration in vitro, but its effect in vivo was poorly understood. We showed that stereotactic injection of sh RNA GSK-3β-adeno associated virus(GSK-3β-AAV) diminished syringomyelia and promoted axonal regeneration after spinal cord injury(SCI), using stereotactic injection of sh RNA GSK-3β-AAV(tested with Western blotting and RT-PCR) into the sensorimotor cortex of rats with SCI and by the detection of biotin dextran amine(BDA)-labeled axonal regeneration. We also determined the right position to inject into the sensorimotor cortex. Our findings consolidate the hypothesis that downregulation of GSK-3β promotes axonal regeneration after SCI.