为提高聚苯并咪唑(PBI)膜的抗氧化性能,以乙烯苄基氯(PVBC)作为PBI的大分子交联剂,并利用1H-1,2,4-三氮唑取代交联剂中的不稳定端基Cl,制备了交联型高温质子交换膜,考察了交联剂用量对膜的电化学性质的影响.研究表明,膜中的交联结构有效提高了膜的抗氧化性能,并兼具优异的电导率及力学性能.采用无增湿H2和O2对膜电极性能进行了测试,150oC下电池最大功率密度达到0.82 W·cm-2.
In order to increase the chemical stability of polybenzimidazole(PBI) membrane, a highly stable polymer, poly vinylbenzyl chloride(PVBC), was chosen as the macromolecular crosslinker, and 1H-1,2,4-triazol was adopted to prepare the crosslinked PBI-based membranes. The influence of the PVBC amount on membrane characteristic was investigated in detail. The results indicated that the crosslinked structure of the membrane effectively improved the chemical stability, and at the same time, the membrane presented good mechanical property and proton conductivity. The fuel cell performance for the membrane was tested with hydrogen and oxygen single cell without humidification at 150 oC, and the maximum power density reached 0.82 W·cm-2.