设f是图G的一个正常全染色.对任意x∈V(G),令C(x)表示与点x相关联的边的颜色以及点x的颜色所构成的集合.若对任意uv∈E(G),有C(u)≠C(v),则称,是图G的一个邻点可区别全染色.对一个图G进行邻点可区别全染色所需的最少的颜色的数目称为G的邻点可区别全色数,记为Xat(G).用G5∨Kt表示长为5的圈与t阶完全图的联图.讨论了C5∨Kt的邻点可区别全色数.利用正多边形的对称性构造染色以及组合分析的方法,得到了当t是大于等于3的奇数以及t是偶数且2≤t≤22时,Xat(C5∨Kt)=t+6,当t是偶数且t≥24时,Xat(C5∨Kt)=t+7.
Let f be a proper total coloring of G. For each x ∈ V(G), let C(x) denote the set of all colors of the edhes incident with x and the color of x. If∨ uv ∈ E(G), we have C(u) ≠ C(v), then f is called an adjacent vertex distinguishing total coloring of G. The minimum number k for which there exists an adjacent vertex distinguishing total coloring of G using k colors is called the adjacent vertex distinguishing total chromatic number of G and denoted by XAt(G). Let C5∨ Kt be the join of the cycle Ca of order 5 and the complete graph Kt of order t. In this paper, we discuss adjacent-vertex-distinguishing total chromatic numbers of C5 V Kt. By using symmetry of regular polygons to construct coloring, and methods of combinatorial analysis, we obtained that for t is odd with t ≥ 3 or t is even with 2 ≤ t ≤22, we have Xat(C5 ∨ Kt) = t + 6; for t is even with t ≥ 24, we have Xat(C5 ∨ Kt) = t + 7.