考虑了差分多项式f(z)^n(f(z)^m-1)Пj=1^df(z+cj)^vj-α(z)的零点问题,其中,(z)是有穷级的超越整函数,cj(cj≠0,j=1,…,d)是互相判别的常数,n,m,d,vj(j=1,……,d)∈N+,a(z)是f(z)的小函数.还讨论了差分多项式的唯一性问题.
The authors consider the zeros of difference polynomial f(z)^n(f(z)^m-1)Пj=1^df(z+cj)^vj-α(z)where f(z) is a transcendental entire function with finite order, cj (cj ≠ 0, j = 1,... , d) are distinct constants, n, m, d, ~j (j = 1,..., d) E N+, a(z) is a small function with respect to f(z). The uniqueness problem on difference polynomials is also discussed.