位置:成果数据库 > 期刊 > 期刊详情页
压电复合材料中幂函数型曲线裂纹的反平面问题
  • ISSN号:1000-3851
  • 期刊名称:《复合材料学报》
  • 时间:0
  • 分类:TB332[一般工业技术—材料科学与工程]
  • 作者机构:[1]北京航空航天大学固体力学研究所,北京100191
  • 相关基金:国家自然科学基金(10932001,11072015);北京市教育委员会共建项目建设计划(KZ201010005()(]3);高等学校博士学科点专项科研基金(20101102110016);北京航空航天大学博士创新基金(300351)
中文摘要:

通过构造新保角映射,利用stroh公式研究了远场受反平面剪应力和面内电载荷共同作用下无限大压电复合材料中幂函数型曲线裂纹的断裂行为。给出了电不可渗透边界条件下裂纹尖端场强度因子和机械应变能释放率的解析解。该解析解在幂函数的幂次为零时,可退化为已有文献中无限大压电复合材料含直线裂纹的结果,证明了其合理性。由解析解可知,裂纹几何形状一定时,电场分布将不受机械载荷的影响。最后,通过数值算例讨论了幂函数的幂次、系数及其在X1轴上的投影长度对机械应变能释放率的影响。结果表明,当压电体仅受X2方向载荷作用时,对于给定幂次与开口的曲线裂纹,在X1轴上的投影长度存在一临界值使其最容易开裂;而对于给定投影长度与幂次的曲线裂纹,开口越大裂纹越容易扩展。

英文摘要:

By proposing a new conformal mapping and using the Stroh formula the fracture problem of a power function curved crack in an infinite piezoelectric coposite is studied under anti-plane shear stress and in-plane electric load at infinity The analytical solutions of the field intensity factors and the mechanical strain energy relrase rate are presented with the assumptio that the surface of the crack is electrically impermeable When the power of the curve is zero the present results can be reduced to the solutions of a Griffith crack in an infinite piezoelectric comosite Based on the analytical solutions it is found that the distribution of electric field is independent on the mechanics load under a fixed shape of the curve,Numerical examples are finally conducted to analyze the influences of the projected length along the X1-axis power and coefficient of curved cracks on the mechanical strain energy release rate The results show that if the plezoelectrlc composlte is subjected to the only load along the direction ot X2-axis there exists a critical projected length along the X1-axis which can promote the crack growth easily for given power and coefficient of curved cracks Moreover for given values of projected length and power of curved cracks the smaller coefficient of curved crack is,the easier crack propagates.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《复合材料学报》
  • 中国科技核心期刊
  • 主管单位:工业和信息化部
  • 主办单位:北京航空航天大学 中国复合材料学会
  • 主编:益小苏
  • 地址:北京海淀区学院路37号
  • 邮编:100083
  • 邮箱:
  • 电话:010-82316907
  • 国际标准刊号:ISSN:1000-3851
  • 国内统一刊号:ISSN:11-1801/TB
  • 邮发代号:80-413
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:17731