图 G 的奴役数字 b (G) 是其移动与比 G 的大的一个支配数字从 G 导致一张图的边的一个最小的集合的集的势。在这份报纸,我们获得二条路径的强壮的产品的奴役数字的准确价值。也就是说为任何二积极整数 m 2 并且 n 2 , b ( P <潜水艇class=“ a-plus-plus ”> m P <潜水艇class=“ a-plus-plus ”> n )= 7 r (m) r (n)如果( r (m), r (n))=( 1 , 1 )或( 3 , 3 ), 6 r (m) r (n)不同在 r (t)是积极整数 t 的功能的地方,定义为 r (t)= 1 如果 t 1 (现代派 3 ), r (t)= 2 如果 t 2 (现代派 3 ),并且 r (t)= 3 如果 t 0 (现代派 3 )。
The bondage number b(G) of a graph G is the cardinality of a minimum set of edges whose removal from G results in a graph with a domination number greater than that of G. In this paper, we obtain the exact value of the bondage number of the strong product of two paths. That is, for any two positive integers ra ≥ 2 and n ≥ 2, b(Pm × Pn) = 7 - r(m) - r(n) if (r(m),r(n)) = (1, 1) or (3,3), 6 - r(m) - r(n) otherwise, where r(t) is a function of positive integer t, defined as r(t) = 1 if t ≡ 1 (mod 3), r(t) = 2 if t ≡2 (mod 3), and r(t) = 3 if t ≡0 (mod 3).