位置:成果数据库 > 期刊 > 期刊详情页
A novel structure for a broadband left-handed metamaterial
  • ISSN号:1674-1056
  • 期刊名称:Chinese Physics B
  • 时间:2012.9
  • 页码:-
  • 分类:O157.5[理学—数学;理学—基础数学] Q517[生物学—生物化学]
  • 作者机构:[1]School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China, [2]School of Mathematical Science, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 相关基金:Supported by the National Natural Science Foundation of China under Grant Nos.61172115 and 60872029; the High-Tech Research and Development Program of China under Grant No.2008AA01Z206; the Aeronautics Foundation of China under Grant No.20100180003; the Fundamental Research Funds for the Central Universities under Grant No.ZYGX2009J037,and Project No.9140A07030513DZ02098
  • 相关项目:基于时间反演技术隐身目标的新型探测方法研究
中文摘要:

We investigate a percolation process where an additional parameter q is used to interpolate between the classical Erd¨os–R′enyi(ER) network model and the smallest cluster(SC) model. This model becomes the ER network at q = 1, which is characterized by a robust second order phase transition. When q = 0, this model recovers to the SC model which exhibits a first order phase transition. To study how the percolation phase transition changes from second order to first order with the decrease of the value of q from 1 to 0, the numerical simulations study the final vanishing moment of the each existing cluster except the N-cluster in the percolation process. For the continuous phase transition,it is shown that the tail of the graph of the final vanishing moment has the characteristic of the convexity. While for the discontinuous phase transition, the graph of the final vanishing moment possesses the characteristic of the concavity.Just before the critical point, it is found that the ratio between the maximum of the sequential vanishing clusters sizes and the network size N can be used to decide the phase transition type. We show that when the ratio is larger than or equal to zero in the thermodynamic limit, the percolation phase transition is first or second order respectively. For our model, the numerical simulations indicate that there exists a tricritical point qcwhich is estimated to be between0.2 < qc< 0.25 separating the two phase transition types.

英文摘要:

We investigate a percolation process where an additional parameter q is used to interpolate between the classical Erd¨os–R′enyi(ER) network model and the smallest cluster(SC) model. This model becomes the ER network at q = 1, which is characterized by a robust second order phase transition. When q = 0, this model recovers to the SC model which exhibits a first order phase transition. To study how the percolation phase transition changes from second order to first order with the decrease of the value of q from 1 to 0, the numerical simulations study the final vanishing moment of the each existing cluster except the N-cluster in the percolation process. For the continuous phase transition,it is shown that the tail of the graph of the final vanishing moment has the characteristic of the convexity. While for the discontinuous phase transition, the graph of the final vanishing moment possesses the characteristic of the concavity.Just before the critical point, it is found that the ratio between the maximum of the sequential vanishing clusters sizes and the network size N can be used to decide the phase transition type. We show that when the ratio is larger than or equal to zero in the thermodynamic limit, the percolation phase transition is first or second order respectively. For our model, the numerical simulations indicate that there exists a tricritical point qcwhich is estimated to be between0.2 〈 qc〈 0.25 separating the two phase transition types.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406