位置:成果数据库 > 期刊 > 期刊详情页
一种优化相关规划的发现方法
  • ISSN号:0254-4164
  • 期刊名称:《计算机学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京交通大学计算机与信息技术学院,北京 100044
  • 相关基金:本课题得到国家自然科学基金(60443003,60442002)资助.
中文摘要:

提出了一种基于相关性的框架.在此框架内,使用残差分析来判断两项之间是否是独立的.残差分析可以使得我们很容易地获得包含负蕴含规则在内的真正的关联(而不是并发)规则,而且不需要指定支持度和可信度阈值.为了提高发现规则的质量,文中使用遗传算法来发现优化规则.在人工数据集和真实数据集上的实验结果表明文中的算法在发现规则的有趣性上优于类Apriori算法.

英文摘要:

This paper proposes a framework based on correlation. In this framework, residual analysis is used to determine whether two itemsets are independent of each other. The measure can help us find really correlated rules instead of concurrent ones. In addition, negatively correlated rules also can be found with residual analysis. Moreover, the support and confidence thresholds not have to be specified in the framework. To improve the quality of rules, the authors employ genetic algorithm to find optimized rules. By running the algorithm on synthetic and real datasets, the author argue that the algorithm outperform over Apriori-like algorithm on the interestingness of rules.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国计算机学会 中国科学院计算技术研究所
  • 主编:孙凝晖
  • 地址:北京中关村科学院南路6号
  • 邮编:100190
  • 邮箱:cjc@ict.ac.cn
  • 电话:010-62620695
  • 国际标准刊号:ISSN:0254-4164
  • 国内统一刊号:ISSN:11-1826/TP
  • 邮发代号:2-833
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:48433