为了提取对大脑的兴趣(ROI ) 的区域,有超过二的磁性的回声成像(MRI ) 反对并且改进分割精确性,聚类算法的基于核的模糊 c 工具(KFCM ) 的一个混合模型和为大脑 MRI 分割的 Chan-Vese (CV ) 模型被建议。途径由二个连续阶段组成。第一, KFCM 被用来做粗糙的分割,它完成起始的轮廓的自动选择。然后,一个改进 CV 模型被利用细分图象。从聚类的 KFCM 的模糊会员度被合并到 2 阶段 piecewise 常数 CV 模型的忠实术语获得精确多目标分割。建议模型举办的试验性的结果表演在精确性并且在到与聚类的模糊 c 工具(FCM ) 比较的噪音的坚韧性的优点, KFCM,和混血儿在大脑 MRI 上 FCM 和 CV 当模特儿分割。
To extract region of interests (ROI) in brain magnetic resonance imaging (MRI) with more than two objects and improve the segmentation accuracy, a hybrid model of a kemel-based fuzzy c-means (KFCM) clustering algorithm and Chan-Vese (CV) model for brain MRI segmentation is proposed. The approach consists of two succes- sive stages. Firstly, the KFCM is used to make a coarse segmentation, which achieves the automatic selection of initial contour. Then an improved CV model is utilized to subdivide the image. Fuzzy membership degree from KFCM clus- tering is incorporated into the fidelity term of the 2-phase piecewise constant CV model to obtain accurate multi-object segmentation. Experimental results show that the proposed model has advantages both in accuracy and in robustness to noise in comparison with fuzzy c-means (FCM) clustering, KFCM, and the hybrid model of FCM and CV on brain MRI segmentation.