位置:成果数据库 > 期刊 > 期刊详情页
大规模SVDD的坐标下降算法
  • ISSN号:1003-6059
  • 期刊名称:模式识别与人工智能
  • 时间:0
  • 页码:950-957
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国人民解放军陆军军官学院,合肥230031
  • 相关基金:国家自然科学基金资助项目(No.61273296,60975040)
  • 相关项目:基于损失函数的统计机器学习算法及其应用研究
中文摘要:

支持向量数据描述(SVDD)是一种无监督学习算法,在图像识别和信息安全等领域有重要应用.坐标下降方法是求解大规模分类问题的有效方法,具有简洁的操作流程和快速的收敛速率.文中针对大规模SVDD提出一种高效的对偶坐标下降算法,算法每步迭代的子问题都可获得解析解,并可使用加速策略和简便运算减少计算量.同时给出3种子问题的选择方法,并分析对比各自优劣.实验对仿真和真实大规模数据库进行算法验证.与LibSVDD相比,文中方法更具优势,1.4s求解10^5样本规模的ijcnn文本库.

英文摘要:

Support vector data description (SVDD) is an unsupervised learning method with significant application in image recognition and information security. Coordinate descent is an effective method for large-scale classification problems with simple operation and high convergence speed. In this paper, an efficient coordinate descent algorithm for solving large-scale SVDD is presented. The solution of concerned sub-problem at each iteration is derived in closed form and the computational cost is decreased through the accelerating strategy and cheap computation. Meanwhile, three methods for selecting sub-problem, analyzing and comparing their advantage and disadvantage are developed. The experiments on simulation and real large-scale database validate the performance of the proposed algorithm. Compared with LibSVDD, the proposed algorithm has great superiority which takes less than 1.4 seconds to solve a text database from ijcnn with 105 training examples.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169