过去几十年里,人们一直努力在固体材料的宏观力学性能及其微观参数间建立起直接的关联。这篇综述文章介绍了我们在这方面取得的一些进展。以化学键键长、离子性、有效成键价电子数等原子尺度上的微观参数为基础,我们建立了固体材料的硬度、拉伸强度及体弹模量的微观模型。通过这些简单的模型,我们可以对材料的相关力学性能进行较为准确的评估。更为重要的是,这些模型可以帮助我们在微观尺度上认识控制材料力学性能的重要参数。结合现阶段的晶体设计方法,这些模型为搜寻新型超硬材料、高强度材料、低压缩材料提供了强有力的预估手段。
Numerous efforts have been made in the past several decades to establish direct links between the macroscopic mechanical properties and the microscopic parameters of solid. In this review, we discuss the progresses we have made under this scheme and present our microscopic models of hardness, tensile strength, and bulk modulus in terms of atomic-scale parameters, such as the bond length, ionicity, the effectively bonded valence electron number, etc. The estimated values from these models are in good agreement with experimental values for various polar covalent crystals. Our current work sheds lights on the nature of these macroscopic mechanical properties (i.e. hardness, tensile strength, and bulk modulus), and provides useful clues for design of superhard, high-strength, or low-compressibility materials.