位置:成果数据库 > 期刊 > 期刊详情页
穿戴位置无关的手机用户行为识别模型
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP274.2[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]西安邮电大学计算机学院,西安710121
  • 相关基金:国家自然科学基金资助项目(61373116);西安邮电大学校内青年基金资助项目(103-0458)
中文摘要:

基于智能手机的人体行为识别能用于健康监控和个人运动管理,针对不同用户携带手机的位置和习惯,分析基于手机传感器获取的三轴加速度信息,从人体不同位置思维行为数据中提取多种特征,优选出与行为相关度高且与手机位置相关度低的特征,构建三种决策树分类模型:(行为位置)矢量模型、位置一行为模型和行为模型,其中行为模型准确率最高;针对手机放置在三种不同位置的混合样本,其行为判断准确率为80.29%,耗时最短,能有效进行用户行为识别。

英文摘要:

Activity recognition by smartphone can be used for healthcare and sports management. People carry smartphones in many positions, such as the pocket of the trousers, hands or bags. This paper used accelerometer embedded in the smartphone to classify five activities, such as staying still, walking, running, going upstairs and downstairs. It used three machine learning algorithms for activity classification, and decision tree was the best way. Three models were constructed by decision tree: the (activity, position) vector model, the position-activity model and the activity model. Compared all these models, the activity model gain the highest accuracy and the least time-consuming, which can effectively identify human behavior.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049