位置:成果数据库 > 期刊 > 期刊详情页
图形聚类算法的代谢网络模块化分析
  • ISSN号:0255-8297
  • 期刊名称:《应用科学学报》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海大学计算机工程与科学学院,上海200072, [2]上海交通大学生物医学仪器研究所,上海200030, [3]上海生物信息技术研究中心,上海200235
  • 相关基金:国家“973”重点基础研究发展计划(2002CB713807,2004CB518606,2003CB715900);上海市科委重大基础(04DZ14003)资助项目
中文摘要:

代谢网络的研究是当今生物学研究中的新热点,使用图形聚类算法对代谢网络进行分析研究是一个有力的手段.文中提出了用图形聚类方法挖掘复杂代谢网络中蕴含的功能信息并进行模块相似性分析的方法,从系统生物学角度揭示光合作用的进化.介绍了马尔可夫聚类算法和模拟退火聚类算法两种图形聚类方法;给出了两种方法对叶绿体和蓝细菌的代谢网络进行聚类的结果;定义了模块相似度评价指标,挖掘叶绿体和蓝细菌间保守的功能模块,并对其网络结构进行了比较分析.

英文摘要:

This paper proposes a new methodology to disclose the functional information of complex metabolic network based on graph clustering algorithms and modular structure comparison, and indicates photosynthesis evolution in view of systems biology. In addition, two graph clustering algorithms, the Markov clustering and simulated annealing clustering, are introduced. The corresponding clustering results of chloroplast and cyanobacteria are presented. A similarity measure is defined to find the conservative functional module between chloroplast and cyanobacteria, and the overall structure of modules is compared with the counterparts in different soecies.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用科学学报》
  • 中国科技核心期刊
  • 主管单位:上海市教育委员会
  • 主办单位:上海大学 中国科学院上海技术物理研究所
  • 主编:王延云
  • 地址:上海市上大路99号123信箱
  • 邮编:200444
  • 邮箱:yykxxb@departmenl.shu.edu.cn
  • 电话:021-66131736
  • 国际标准刊号:ISSN:0255-8297
  • 国内统一刊号:ISSN:31-1404/N
  • 邮发代号:4-821
  • 获奖情况:
  • 首届中国高校优秀科技期刊,第2届中国高校优秀科技期刊奖,全国高校优秀科技期刊,中国科技期刊方阵双效期刊,上海市优秀科技期刊,首届《CAJ-CD》执行优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:4747