位置:成果数据库 > 期刊 > 期刊详情页
DBSCAN算法优化及在村镇管理决策中的应用
  • ISSN号:1000-1298
  • 期刊名称:《农业机械学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:中国农业大学信息与电气工程学院,北京100083
  • 相关基金:国家星火计划项目(2015GA600002)
中文摘要:

作为空间数据挖掘技术中的一种,带有噪声的空间聚类应用算法(DBSCAN算法)是基于密度的聚类算法,其可以从空间数据库中发现任意形状的聚类。本文研究了基于密度的空间聚类算法优化原理及实现过程,分析了原始DBSCAN算法存在的问题,通过避免公共领域对象的重复查询,减少对核心对象邻域查询的计算,优化后算法的时间效率提高了33.73%。将优化后的DBSCAN算法应用于村镇网格化管理,可对网格化管理系统中的数据记录进行有效挖掘,为村镇管理工作提供信息和辅助决策。

英文摘要:

As one of the spatial data mining technologies, DBSCAN algorithm is a density-based clustering algorithm. Since it can find clusters with any forms from the spatial database,DBSCAN algorithm becomes more and more popular. The optimization principle and realization process of densitybased spatial clustering algorithm were studied in detail,and the existing problems of original DBSCAN algorithm were analyzed. By avoiding repeated searches of objects in the public domain,the computation of searches on the neighborhood of core object was reduced,and the time efficiency of the algorithm was improved. After analyzing the distribution of roadside stall business in rural areas,two key parameters,i. e.,Eps and Min Pts,of the algorithm and the searching zone of neighborhood of core object were determined. The experiment results showed that the time efficiency of optimized algorithm was improved by approximately 33. 73%. Finally, the optimized algorithm was applied to the community grid management in rural areas. By data mining of the rural area grid management system,the most frequent regions were successfully identified for roadside stall business. Using this algorithm,the hot spots of problems in rural area management can be found out in time,which uncovered the common rules hidden behind the routine business. Hence,the corresponding management can be performed to a certain region,which can provide information and auxiliary decisions for rural area management.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884