位置:成果数据库 > 期刊 > 期刊详情页
基于内存云的大块数据对象并行存取策略
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP393.02[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]新疆大学软件学院,乌鲁木齐830008, [2]新疆大学信息科学与工程学院,乌鲁木齐830046
  • 相关基金:国家自然科学基金资助项目(61462079,61262088,61562086,61363083)
中文摘要:

由于内存云(RAMCloud)只支持最大1 MB的小块数据对象存储,因此当大于1 MB的对象需要存储在内存云集群中就会受到对象大小的限制,无法在集群中进行存储。为了解决内存云存储限制的问题,提出了基于内存云的大块数据对象并行存取策略。该存储策略首先将大块数据对象分割成若干个1 MB的小块数据对象,然后在客户端生成数据摘要,最后使用并行存储算法将客户端分割成的小块数据对象存储在内存云集群中。读取时首先读取数据摘要,然后根据数据摘要从内存云集群中并行读取小块数据对象,并将小块数据对象合并生成大块数据对象。实验结果表明:大块数据对象的并行存取策略在不破坏内存云集群体系结构的前提下存储时间为16~18μs,读取时间为6~7μs。在Infini Band网络架构下,所提并行算法的加速比呈现类似线性的增长,它使大块数据对象也能够像小块数据对象一样在微秒级别下快速、高效地进行存取。

英文摘要:

RAMCloud only supports the small object storage which is not larger than 1 MB. When the object which is larger than 1 MB needs to be stored in the RAMCloud cluster,it will be constrained by the object's size. So the big data objects can not be stored in the RAMCloud cluster. In order to resolve the storage limitation problem in RAMCloud,a parallel access strategy for big data objects based on RAMCloud was proposed. Firstly,the big data object was divided into several small data objects within 1 MB. Then the data summary was created in the client. The small data objects which were divided in the client were stored in RAMCloud cluster by the parallel access strategy. On the stage of reading,the data summary was firstly read,and then the small data objects were read in parallel from the RAMCloud cluster according to the data summary.Then the small data objects were merged into the big data object. The experimental results show that,the storage time of the proposed parallel access strategy for big data objects can reach 16 to 18 μs and the reading time can reach 6 to 7 μs without destroying the architecture of RAMCloud cluster. Under the Infini Band network framework,the speedup of the proposed paralled strategy almost increases linearly,which can make the big data objects access rapidly and efficiently in microsecond level just like small data objects.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679