在利用空域法恢复地球重力场时,向下延拓是卫星重力梯度数据预处理必不可少的步骤。将航空重力数据处理中的球内Dirichlet法、泊松积分迭代法、谱方法引入卫星重力梯度数据的向下延拓中,建立了相应的数学模型,解决了传统的球内Dirichlet问题存在的数值矛盾,利用模拟的卫星重力梯度数据对3种方法的向下延拓效果进行了分析和讨论。结果表明:当延拓距离为5 km时,谱方法所获得的延拓结果精度最高,其次为球内Dirichlet法,泊松积分迭代法精度最差;当延拓距离是250 km时,泊松积分迭代法的精度最好,其次为谱方法,球内Dirichlet法的精度最差。
Downward continuation is one of the indispensible steps in pre-processing satellite gravity gradient data when recovering the earth gravity field with space-wise method.The spherical interior Dirichlet method,the Poisson integral iteration method and the spectral method,which are used in the processing of aerial gravity data,are introduced into the downward continuation of satellite gravity gradient data,the corresponding mathematical models are constructed,the numerical value inconsistency in the traditional spherical interior Dirichlet problem is also solved,and the downward continuation effects of these three methods are analyzed and discussed by taking the simulated satellite gravity gradient data as the example.The results show that when the continuation distance is 5 km,the resultant continuation precision of the spectral method is the best,the spherical interior Dirichlet methods’ is the second,and the Poisson integral iteration methods’ is the last;when the continuation distance is 250 km,the resultant continuation precision of the Poisson integral iteration method is the best,the spectral methods’ is the second,and the spherical interior Dirichlet methods’ is the last.