位置:成果数据库 > 期刊 > 期刊详情页
基于用户紧密度的在线社会网络社区发现算法
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中南大学信息科学与工程学院,长沙410083
  • 相关基金:国家自然科学基金资助项目(61073037)
中文摘要:

针对在线社会网络潜在社区难以检测的问题,根据在线社会网络的独有特性,提出一种基于用户紧密度的在线社会网络社区发现算法。创建初步用户图,依据节点属性相似性算法计算用户个体紧密度,基于共有邻居相似性算法计算用户社区紧密度,从而构造出完整用户图,利用层次聚类算法对完整用户图进行处理,发现潜在社区。实验结果表明,与NAS、CNS算法相比,该算法的社区凝聚度与正确率更高,分别达到0.67和97.1%。

英文摘要:

Aiming at the problem that it is difficult to detect the potential community of Online Social Networks(OSNs),based on the unique characteristics of OSNs,this paper proposes the new concept of user tightness,and designs a community detection algorithm based on it.It creates the initial user graph,computes user individual tightness based on node attribute similarity algorithm,and computes user community tightness based on common neighbor similarity algorithm,to create the integrated user graph,it processes the integrated user graph with hierarchical clustering algorithm,to detect the potential communities.Experimental result shows that compared with NAS algorithm and CNS algorithm,the detected communities of this algorithm have much higher degree of cohesion and accuracy,and reach 0.67 and 97.1%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139