对于复杂分类问题,不可避免的会有错分情况,此时支持向量机的支持向量较多,影响了识别速度.为了解决这个问题,我们提出了基于最小错分间隔的分类思想,并在此基础上得出了一种新的简化支持向量机.与普通支持向量机相比,这种简化支持向量机有较少的支持向量、较高的识别速度,而且实验结果表明,它的识别精度完全可以与普通支持向量机的识别精度相媲美,甚至更优.
For complicated recognition problem, the number of support vectors is large and recognition speed is low, because some sample were divided into section by error this time. To solve this problem, a method is bought to simplify the support vector machines based the minimal misestimate margin idea. Experiments show that this new support vector machine not only reduces the number of support vectors and recognition time but also has the same accuracy as( even better than) traditional support vector machine.