研究了Ni—W催化剂催化正辛烷加氢裂化的详细机理动力学。通过管式固定床反应器采集动力学实验数据,各实验条件下加氢裂化产物均通过色质联用分析获取其详细的产物组成。根据碳正离子反应机理建立了简化的反应网络,各基元步骤中PCP异构化和β位断裂为速率控制步骤。通过单事件(Single Event)方法对速率系数的模型化,基于详细基元步骤的正辛烷加氢裂化动力学模型独立参数个数得到简化,采用遗传算法和Marquardt算法对12个动力学参数进行回归。对于不同反应条件下的产物生成速率,模型计算值与实验值符合良好。由于Single Event方法所得的动力学模型参数与原料的碳数组成无关,因此该结果可以为进一步外推到高碳数的模型化合物和费-托合成蜡等复杂油品的加氢裂化动力学计算提供参考。
The n-octane hydrocracking kinetic modeling was studied over a Ni-W catalyst. The kinetic data were obtained in a tubular fixed-bed reactor. The condensed liquids and non-condensable gas components were analyzed by offline and online GCs, respectively. The reaction network was built based on the carbenium-ion mechanism. PCP isomerization and β-scission were assumed as rate determining steps. With the application of Single Event method, the number of independent parameters was reduced. The genetic algorithm and the Marquardt algorithm were used for 12 parameters estimation. The calculated rate values are in agreement with the experimental values. The parameters can be used in kinetic studies of F-T wax hydrocracking and other materials with high carbon because of the intrinsic property of the Single Event based values.