位置:成果数据库 > 期刊 > 期刊详情页
Spam Filtering: Online Naive Bayes Based on TONE
  • ISSN号:0367-6234
  • 期刊名称:《哈尔滨工业大学学报》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术] TP311.56[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]. Research Institute of Information Technology, Tsinghua University, Beijing100084, China, [2]ZTE Corporation, Shenzhen 518057, China, [3]School of Computer Science and Technology, Harbin University of Science and Technology. Harbin 150080. China
  • 相关基金:This work is supported by National Natural Science Foundation of China under Grant NO. 60903083, Research fund for the doctoral program of higher education of China under Grant NO.20092303120005,and the Research Fund of ZTE Corporation.
中文摘要:

The naive Bayes(NB) model has been successfully used to tackle spam,and is very accurate.However,there is still room for improvement.We use a train on or near error(TONE) method in online NB to enhance the performance of NB and reduce the number of training emails.We conducted an experiment to determine the performance of the improved algorithm by plotting(1-ROCA)% curves.The results show that the proposed method improves the performance of original NB.

英文摘要:

The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB.

同期刊论文项目
期刊论文 12 会议论文 12 专利 5 著作 2
同项目期刊论文
期刊信息
  • 《哈尔滨工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工业大学
  • 主编:冷劲松
  • 地址:哈尔滨市南岗区西大直街92号
  • 邮编:150001
  • 邮箱:
  • 电话:0451-86403427 86414135
  • 国际标准刊号:ISSN:0367-6234
  • 国内统一刊号:ISSN:23-1235/T
  • 邮发代号:14-67
  • 获奖情况:
  • 2000年获黑龙省科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27329