位置:成果数据库 > 期刊 > 期刊详情页
BOS:一种用于不平衡数据学习的边界过采样方法
  • ISSN号:0490-6756
  • 期刊名称:《四川大学学报:自然科学版》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]四川大学计算机学院,成都610065, [2]四川大学化学学院,成都610065
  • 相关基金:食品中抗生素类药物残留评估的化学与生物信息学方法探索(21175095); 基于抗癌药物及其靶标蛋白相互作用的层次网络研究(20972103)
中文摘要:

不平衡数据遍布于现实生活中许多重要领域,而标准的分类学习算法应对不平衡问题有明显的性能缺陷.为了解决这一问题,提出一种新的少数类边界合成过采样方法BOS.BOS使用新定义的K广义Tomek连接(简称K连接)概念有效定位边界实例,进而基于少数类的K连接分布实现自适应地少数边界合成过采样.实验结果表明,BOS相比已有的几种典型过采样方法提供更优的接受者操作特性曲线下方面积值(AUC),F值(F-Measure)和几何平均值(G-mean).

英文摘要:

The imbalance data are pervasive in a large number of realworld domains of great importance. Traditional classification learning algorithms behave undesirable in imbalanced problem. To address this problem,the authors proposed a new synthetic minority borderline synthetic oversampling method named as BOS. In BOS, a novel K generalized Tomek links concept was used to locate minority class borderline instances, and adaptively generating minority instances were implemented base on the number of their K links. Experimental results show that BOS performed better than some existing typical methods, with more excellent FMeasure, Gmean and the area under the ROC(AUC) values.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《四川大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:四川大学
  • 主编:刘应明
  • 地址:成都九眼桥望江路29号
  • 邮编:610064
  • 邮箱:
  • 电话:028-85410393 85412393
  • 国际标准刊号:ISSN:0490-6756
  • 国内统一刊号:ISSN:51-1595/N
  • 邮发代号:62-127
  • 获奖情况:
  • 国家“双效”期刊,四川省十佳科技期刊,教育部全国高校优秀学报二等奖(1995,1999),四川省科技优秀期刊一等奖(1996,2000)
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10542