位置:成果数据库 > 期刊 > 期刊详情页
基于云模型的自学习进化算法
  • ISSN号:1673-0291
  • 期刊名称:《北京交通大学学报:自然科学版》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]华侨大学计算机科学与技术学院,福建厦门361021
  • 相关基金:国家自然科学基金资助项目(60573056);福建省自然科学基金资助项目(A0710013)
中文摘要:

结合进化论和遗传理论的最新进展,提出基于学习算子的自学习进化算法;并将正态云模型引入进化过程中,提出云学习算子和基于云学习算子的自学习进化算法.最后的仿真实验表明,该算法具有精度高、收敛速度快等优点,能在很大程度上解决了现存进化算法的低效问题.

英文摘要:

A learn operator is proposed based on the analysis of the status in quo such as ignoring initiative of individual belonging to the current population and combined with the last word of evolutionism and genetics. The extension of the traditional evolutionary algorithms is made by adding this learn operator. The definition of active evolutionary algorithm is put forward. After imported the normal cloud in the procedure of evolutionary, the learn operator with cloud is defined and the active evolutionary algorithm based on cloud model is advanced. With some typical test functions, the results prove the high quality of the algorithm on precision, stability and convergence rate. It also indicated that this improved evolutionary can greatly overcome the shortcoming of low efficiency in traditional evolutionary algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京交通大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京交通大学
  • 主编:孙守光
  • 地址:北京市西直门外上园村3号北方交通大学8楼8101室
  • 邮编:100044
  • 邮箱:bfxb@bjtu.edu.cn
  • 电话:010-51688053
  • 国际标准刊号:ISSN:1673-0291
  • 国内统一刊号:ISSN:11-5258/U
  • 邮发代号:
  • 获奖情况:
  • 1995年铁道部科技期刊一等奖、1999年教育部组织的...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:5152