位置:成果数据库 > 期刊 > 期刊详情页
基于深度学习和多尺度编码组合的手背静脉识别
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北方工业大学电子信息工程学院,北京100144
  • 相关基金:国家自然科学基金项目(61271368); 北京市自然科学基金重点项目(KZ201410009012)
中文摘要:

针对手背静脉识别技术,提出了一种基于深度学习和多尺度编码组合的手背静脉识别算法.首先,利用下采样和小波分解获取多尺度下的手背静脉图像,然后采用中心对称的局部二值模式(CSLBP)提取图像的特征,再次对提取的特征采用深层模型—限制玻尔兹曼机(RBM)逐层训练,最后采用多尺度编码组合的方式进一步提高识别率.实验证明,本文所提出的方法较传统的PCA、LBP算法识别率更高.

英文摘要:

Based on the deep learning and multi-scale coding, this paper proposed a hand dorsal vein recognition algorithm. First, we acquired hand dorsal vein image of multiple scales by using sampling and wavelet decomposition. Second, we extracted image feature by center-symmetrical local binary patterns (CSLBP). Third, we trained extracted features layer by layer again using deep model-Restricted Boltzmann Machine(RBM). And finally we improved the recognition rate by adopting mode of multi-scale coding combination. The result shows that the recognition rate of the proposed method is higher than that of the traditional PCA/LBP algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924