位置:成果数据库 > 期刊 > 期刊详情页
基于MapReduce的Skyline-join查询算法
  • ISSN号:0367-6234
  • 期刊名称:《哈尔滨工业大学学报》
  • 时间:0
  • 分类:TP311.133.1[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(61033015)
中文摘要:

Skyline查询是一种非常耗时的操作,而涉及多个表的Skyline查询(Skyline-join查询)则会给数据库系统带来更多的负载,从而影响整个系统的响应时间.为解决这个问题,提出了基于Google设计的MapRe-duce并行处理框架的Skyline-join查询处理算法,采用分片剪枝的方法降低复杂度,进而提高查询性能.在Amazon的云计算平台(EC2)上进行的实验表明,该算法可以有效减少冗余操作和网络数据传输,基本不受节点个数以及数据量的影响,具有很好的可扩展性.

英文摘要:

Skyline query is one of the most expensive operators in the database system.Some Skyline queries involving multiple tables,which are called Skyline-join queries,are even more costly to evaluate.Therefore,in this paper,we adopt Google's MapReduce,a parallel processing framework,to handle Skyline-join queries.A novel parallel algorithm is proposed to prune the dataset progressively and hence the network transfer cost is reduced.The algorithm is evaluated on Amazon's EC2 and the experiments verify its efficiency.

同期刊论文项目
期刊论文 103 会议论文 42 获奖 2 著作 1
同项目期刊论文
期刊信息
  • 《哈尔滨工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工业大学
  • 主编:冷劲松
  • 地址:哈尔滨市南岗区西大直街92号
  • 邮编:150001
  • 邮箱:
  • 电话:0451-86403427 86414135
  • 国际标准刊号:ISSN:0367-6234
  • 国内统一刊号:ISSN:23-1235/T
  • 邮发代号:14-67
  • 获奖情况:
  • 2000年获黑龙省科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27329