的新二倍地周期的波浪解决方案的一个类(2+1 ) 维的 KdV 方程被介绍适当 Jacobi 获得椭圆形的函数和 Weierstrass 在一般解决方案的椭圆形的函数(包含二个任意的函数) 借助于 multilinear 变量分离途径得到了为(2+1 ) 维的 KdV 方程。限制盒子被考虑,一些局部性的刺激被导出,例如 dromion, mul-tidromions, dromion-antidromion, multidromions-antidromions 等等。dromion-antidromion 和 multidromions-antidromions 的一些答案在一个方向是周期的但是在另外的方向局部性。这些答案的相互作用性质,数字地被学习,表明他们中的一些是无弹性的,一些是完全有弹性的。而且,这些结果被设想。
A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.