介绍了一种大面积规则有序、结构可控、灵敏度高、稳定性良好、制备方法简单且易操作的表面增强拉曼散射(surface-enhanced Raman scattering, SERS) 活性基底. 以阳极氧化铝(anodic aluminum oxide, AAO) 模板一次氧化后形成的有序凹坑阵列为模板, 采用真空镀膜技术, 制备了有序的金纳米帽阵列SERS 活性基底, 并以罗丹明6G (Rhodamine 6G , R6G) 为探针分子, 测试和分析了该SERS 活性基底的表面增强拉曼光谱的特性. 结果表明, 这种SERS 活性基底对罗丹明6G 的拉曼散射信号可达到107, 具有较好的增强作用. 该纳米帽阵列结构在1 363 cm?1处的增强效果是相同厚度的普通金膜的7 倍, 且稳定性良好, 并且在放置6 个月之后, 其增强效果基本不变, 可用于化学物质和生物分子的痕量分析.
A simple and versatile method for fabricating surface-enhanced Raman scattering (SERS) active substrate with high uniformity, structural controllability, high sensitivity and great stability is reported. The ordered aluminum template formed during the synthesis of anodic aluminum oxide (AAO) film was used as the concaved matrix. Au nanocap arrays as SERS active substrates were prepared through thermally evaporation. Taking Rhodamine 6G (R6G) as probing molecules, SERS spectra were investigated. The results indicates that these SERS active substrates displayed very strong SERS performances (Raman enhancement factor 〉1×107). Comparing with the ordinary Au film, the SERS enhancement effect of the Au nanocap array is about seven times stronger at 1 363 cm?1. A 6-month-old sample almost kept the same SERS activity with the newly prepared sample. Such ordered Au nanocap arrays allows application in the detection of chemical and biological molecules with trace amounts.