对于求解对称正定线性方程组的Richardson迭代法,给出一个新的常数步长.它仅依赖于系数矩阵的对角线上的最小元素和最大特征值.而且,还证明了在该步长下Richardson迭代法产生的梯度模序列线性地趋于0.初步的数值试验表明了新步长的某些优势.
Richardson iterative method for solving system of linear equations with the positive definite coefficient matrix is considered,and a new constant step length rule only depending on the minimal diagonal element and the maximum eigenvalue is proposed.Furthermore,the linear convergence of the generated gradient norms to zero is proved.Preliminary numerical tests show that the new rule is competitive for certain problems.