位置:成果数据库 > 期刊 > 期刊详情页
基于三维重力加速器人体动作识别与分类
  • ISSN号:1671-8844
  • 期刊名称:《武汉大学学报:工学版》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]武汉纺织大学机械工程与自动化学院,湖北武汉430073
  • 相关基金:国家自然科学基金资助项目(编号:61271008).
中文摘要:

运用单个动作传感器通过机器学习算法——支持向量机(SVM),建立出色的人体日常动作识别模型.通过3个主要步骤对动作数据进行了处理,即小波转换,基于降维和K层交叉验证的主成分分析(PCA)以及自动寻优搜索获得SVM径向基核函数中的最佳参数σ和c,获得识别6种人体动作的最佳分类器.采用SVM(支持向量机)算法获得的动作分类器,在对不同动作识别时,得出的平均准确率达到94.5%.这表明基于人体动作识别的验证方法具有实用价值的,并在不久的将来会有进一步的提升.

英文摘要:

Using a posture sensor to validate human daily activity and by machine learning algorithm--support vector machine (SVM) to build an outstanding model. The optimal parameters a and c of radial basis function(RBF) kernel SVM were obtained by searching automatically. Those kinematic data were carried out through three major steps: wavelet transform, principal component analysis (PCA)-based dimensionality reduction and k-fold cross-validation, followed by implementing a best classifier to distinguish 6 different actions. As an activity classifier, the SVM algorithm is used; and we have achieved over 94.5% of mean accuracy in detecting different actions. It is shown that the verification approach based on the recog- nition of human activity detection is valuable and will be further explored in the near future.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:武汉大学
  • 主编:李晓红
  • 地址:武汉市 珞珈山
  • 邮编:430072
  • 邮箱:ejwhu@whu.edu.cn
  • 电话:027-68755516 68752082
  • 国际标准刊号:ISSN:1671-8844
  • 国内统一刊号:ISSN:42-1675/T
  • 邮发代号:38-18
  • 获奖情况:
  • 水利工程类核心期刊,全国优秀高校自然科学学报,湖北省优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11402