以三川河流域为例,应用WEP-L分布式水文模型和集总式流域水资源调配模型偶合而成的二元水循环模型,模拟了不同情景下流域水循环过程。在此基础上,定量分析了降水、人工取用水以及下垫面条件这三个主要驱动因子对流域水资源演变的影响。在模型中保持其它条件不变,仅以改变降水、人工取用水及下垫面条件来模拟8种不同情景的水循环:情景1,1956—1979年降水系列、2000年下垫面、无人工取用水;情景2,1980—2000年降水系列、2000年下垫面、无人工取用水;情景3,1956—2000年降水系列、2000年下垫面、无人工取用水;情景4,1956—2000年降水系列、2000年下垫面、有人工取用水;情景5,1956—2000年降水系列、1956—2000年系列模拟下垫面、无人工取用水;情景6,1956—2000年降水系列、2000下垫面、无人工取用水;情景7,1956—1979年降水系列、1956—1979年系列模拟下垫面、无人工取用水;情景8;1980—2000年降水系列、2000年下垫面、有人工取用水。情景2和情境1比较,发现降水单项因子减少4.5%引起各种口径水资源量的减少,地表水资源量减少18.4%,地下与地表水资源不重复量15.8%,狭义水资源量18.3%,有效蒸散发量2.1%,广义水资源量4.6%。情景4和情境3比较得出,在人工取用水单项因子作用下,地表水资源量减少4。6%,而地下与地表水资源不重复量增加113.5%,在狭义水资源量减少0.4%的同时,伴随有效蒸散发量增加0.9%,广义水资源量增加0.7%。情景6和情境5对比,发现在下垫面条件单项因子作用下,狭义水资源量及其构成地表水资源量和地下与地表水资源不重复量分别减少4.3%、4.3%和2.8%,有效蒸散发量增加7.1%,广义水资源量增加5.3%。情景8和情境7对比分析得出,三个因子对水资源量的综合影?
We apply the distributed hydrological model (WEP-L model) with physical mechanism to simulate hydrological cycle under the different conditions of Sanchuanhe basin as a case study, and analyze the quantitative influence of the different factors such as precipitation, water use and underlying surface on the evolution of water resources on the basis. Eight cases are described: Case Ⅰ, the precipitation data in 1956- 1979, the underlying surface data in 2000 and the zero water use; case 2, the precipitation data in 1980- 2000, the underlying surface data in 2000 and the zero water use; case 3, the precipitation data in 1956- 2000, the underlying surface data in 2000 and the zero water use; case 4, the precipitation data in 1956- 2000, the underlying surface data in 2000 and the real water use; case 5, the precipitation data in 1956 - 2000, the underlying surface data in 1956 - 2000 and the zero water use ; case 6, the precipitation data in 1956 - 2000, the underlying surface data in 2000 and the zero water use; case 7, the precipitation data in 1956 - 1979, the underlying surface data in 1956 - 1979 and the zero water use; and Case 8, the precipitation data in 1980 - 2000, the underlying surface data in 2000 and the real water use. The comparison of case 1 and case 2 show that 4.5% reduction of precipitation causes the decrease in water resources in tall forms: 18.4% surface water resources and groundwater resources, 15.8% not overlapped with surface water resources, 18.3% special water resources, 2.1% precipitation effective utilization and 4.6% general water resources. In case 4, the surface water resources reduce by 4.6% but the not-overlapped groundwater resources and surface water increase by 113.5%, and the special water resources decrease by 0.4% but the general water resources increase by 0.7%, and 0.9% increase of the precipitation effective utilization compared with that in case 4. Comparing with the water resources in case 5, the special water resources decrease by 4.3 % with 4.3% and 2.8% decre