位置:成果数据库 > 期刊 > 期刊详情页
Experimental investigation on the relevance of mechanical properties and porosity of sandstone after hydrochemical erosion
  • ISSN号:1000-4548
  • 期刊名称:《岩土工程学报》
  • 时间:0
  • 分类:TU528.31[建筑科学—建筑技术科学] P618.130.2[天文地球—矿床学;天文地球—地质学]
  • 作者机构:[1]Fujian Research Center for Tunneling and Urban Underground Space Engineering, Huaqiao University, Xiamen361021, China, [2]School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian116024, China
  • 相关基金:the National Basic Research Program of China (973 Program) (Grant No. 2011CB013503), the National Natural Science Foundation of China (Grant No. 51374112, 51679093), and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-PY112, ZQN-PY311).
中文摘要:

Under the effect of chemical etching,the macroscopic mechanical properties,mesoscopic structure,mineral content,and porosity of rocks undergo significant changes,which can lead to the geological disasters; thus,an understanding of changes in the microscopic and macroscopic structure of rocks after chemical etching is crucial.In this study,uniaxial mechanical tests and nuclear magnetic resonance(NMR) spectroscopy were carried out on sandstone samples that had been previously subjected to chemical erosion under different p H values.The aim was to study changes in properties and mechanical characteristics,including deformation and strength characteristics,of the rock,and microscopic pore variation characteristics,and to perform preliminary studies of the chemical corrosion mechanism.Results show that different chemical solutions have a significant influence on the uniaxial compressive strength,the axial strain corresponding to the peak axial stress,elastic modulus,etc.With the passage of time,porosity increases gradually with exposure to different chemical solutions,and exposure to chemical solutions results in large changes in the NMR T2 curve and T2 spectrum area.Sandstone exposed to different chemical solutions exhibits different corrosion mechanisms; the root cause is the change of mineral.

英文摘要:

Under the effect of chemical etching, the macroscopic mechanical properties, mesoscopic structure, mineral content, and porosity of rocks undergo significant changes, which can lead to the geological disasters; thus, an understanding of changes in the microscopic and macroscopic structure of rocks after chemical etching is crucial. In this study, uniaxial mechanical tests and nuclear magnetic resonance (NMR) spectroscopy were carried out on sandstone samples that had been previously subjected to chemical erosion under different pH values. The aim was to study changes in properties and mechanical characteristics, including deformation and strength characteristics, of the rock, and microscopic pore variation characteristics, and to perform preliminary studies of the chemical corrosion mechanism. Results show that different chemical solutions have a significant influence on the uniaxial compressive strength, the axial strain corresponding to the peak axial stress, elastic modulus, etc. With the passage of time, porosity increases gradually with exposure to different chemical solutions, and exposure to chemical solutions results in large changes in the NMR T2 curve and T2 spectrum area. Sandstone exposed to different chemical solutions exhibits different corrosion mechanisms; the root cause is the change of mineral.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《岩土工程学报》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国水利学会 中国土木工程学会 中国力学学会 中国建筑学会 中国水力发电工程学会 中国振动工程学会
  • 主编:蔡正银
  • 地址:南京虎踞关34号
  • 邮编:210024
  • 邮箱:ge@nhri.cn
  • 电话:025-85829553 85829534
  • 国际标准刊号:ISSN:1000-4548
  • 国内统一刊号:ISSN:32-1124/TU
  • 邮发代号:28-62
  • 获奖情况:
  • 中国科协二等奖,江苏省首届优秀期刊奖,连续三次被评为核心期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54826