本文基于三类特殊三角形(等边、等腰直角及(30°,60°,90°)三角形域)Laplace特征函数系的构造,提出任意三角形区域上Laplace特征值的近似公式与算法.给出任意三角形域上所有特征值的逼近公式:λm,n≈π2/24s2(h1^2(7m^2-12mn+7n^2)=h2^2(3m^2-4mn+3n^2)-2h2^2(m^2-4mn+n^2)),(m〉n≥)特别,对于最小特征值λmin=λ2,1≈χ2/s211h1^2+7H2^2+6H3^2/24,其中S 是该三角形(h1≤h2≤h3)的面积,可作为数值PDE中三角剖分质量的一咱新标准q(T):=3h3^2/16s^211h1^1+7h2^2+6h3^2/24结合数值计算与符号计算,将这三类三角形的基底综合形成统一的新基底,以反映几何(三条边)对于特征问题的影响,从而提高任意三角形域的求解精度.
Based on Laplace eigen-structure over three special triangle domains (regular trian- gle, isoceles triangle and triangle with (30°, 60°, 90°)), we propose a unified basis to com- pute all Laplace eigenvalues over an arbitrary triangle with mixed numerical and symbolic computation. And a class of approximate formulas for evaluating all eigenvalues over an arbitrary triangle asλm,n≈π2/24s2(h1^2(7m^2-12mn+7n^2)=h2^2(3m^2-4mn+3n^2)-2h2^2(m^2-4mn+n^2)),Especially, for the smallest eigenvalueλmin=λ2,1≈χ2/s211h1^2+7H2^2+6H3^2/24 ~ " lengths where S is the areu of the triangle with three h1≤h2≤h3.And it can be as a new quality of 2-D triangle grid for 2-nd PDE problems as q(T):=3h3^2/16s^211h1^1+7h2^2+6h3^2/24/Toreflect the influence of the three side-lengths on the eigenvalues over an arbitrary triangle, we put the above three basis together and use numerical computation with some symbolic. This hybrid algorithm may a way to raise the accuracy of eigenvalues in computing.