间歇湍流意味着湍流涡旋并不充满空间,其维数介于2和3之间.湍流扩散为超扩散,且概率密度分布具有长尾特征.本文将流体力学的Navier.Stokes(NS)方程中的黏性项用分数阶的拉普拉斯算子表达.分析表明,分数阶拉普拉斯的阶数α和间歇湍流的维数D相联系.对于均匀各向同性的Kolmogorov湍流α=2,即用整数阶NS方程描述.而对于间歇性湍流,一定用分数阶的NS方程来描述.对于Kolmogorov湍流,扩散方差正比于t3,即Richardson扩散.而对于间歇性湍流,扩散方差要比Richardson扩散更强.
Intermittent turbulence means that the turbulence eddies do not fill the space completely, so the dimension of an intermittent turbulence takes the values between 2 and 3. Turbulence diffusion is a super-diffusion, and the probability of density function is fat-tailed. In this paper, the viscosity term in the Navier-Stokes equation will be denoted as a fractional derivative of Laplatian operator. Dimensionless analysis shows that the order of the fractional derivative α is closely related to the dimension of intermittent turbulence D. For the homogeneous isotropic Kolmogorov turbulence, the order of the fractional derivatives α = 2, i.e. the turbulence can be modeled by the integer order of Navier-Stokes equation. However, the intermittent turbulence must be modeled by the fractional derivative of Navier-Stokes equation. For the Kolmogorov turbulence, diffusion displacement is proportional to t3, i.e. Richardson diffusion, but for the intermittent turbulence, diffusion displacement is stronger than Richardson diffusion.