位置:成果数据库 > 期刊 > 期刊详情页
高效的基于段模式的恶意URL检测方法
  • ISSN号:1000-436X
  • 期刊名称:《通信学报》
  • 时间:0
  • 分类:TP3[自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院大学,北京100049, [2]中国科学院信息工程研究所,北京100093
  • 相关基金:国家自然科学基金项目(61502478);国家核高基项目(2013ZX01039-002-001-001);国家高技术研究发展计划项目(2013AA013204)
中文摘要:

微博是互联网舆论演化的重要平台,对微博进行情感分析,有助于及时掌握社会热点和舆论动态。由于微博数据内容简短、特征稀疏、富含新词等特征,微博情感分类依然是一个较难的任务。传统的文本情感分类方法主要基于情感词典或者机器学习等,但这些方法存在数据稀疏的问题,而且忽略了词的语义、语序等信息。为了解决上述问题,提出一种基于卷积神经网络的中文微博情感分类模型CNNSC,实验表明相比目前的主流方法,CNNSC的准确率提高了3.4%。

英文摘要:

Microblogging is an important platform for the evolution of Internet media, microblogging emotional analysis, help to grasp the social hot spots and public opinion. As the content of Micro-blog short, sparse features, rich in new words and other features, Micro-blog emotional classification is still a difficult task. Traditional text emotion classification methods are mainly based on emotional dictionary or machine learning, but these methods have sparse data, and ignore the semantic, word order and other information. In order to solve the above problem, this paper proposes a Chinese microblogging emotion classification model based on CNN. The experiment shows that the accuracy of the model is improved by 3.4% compared with the current mainstream method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《通信学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会
  • 主编:杨义先
  • 地址:北京市丰台区成寿寺4路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:
  • 电话:010-81055478 81055481
  • 国际标准刊号:ISSN:1000-436X
  • 国内统一刊号:ISSN:11-2102/TN
  • 邮发代号:2-676
  • 获奖情况:
  • 信息产业部通信科技期刊优秀期刊二等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:25019