设R是一个环,M是双R-模,若对每个e∈E(R),有eR(1-e)Me=eM(1-e)Re=0,则称M为拟Abel模,这里E(R)表示R的幂等元集合.若R-双模R是拟Abel的,则称R为拟Abel环.证明了如下结果:①R为拟Abel环当且仅当对任意的a∈N(R),e∈E(R),ea=0蕴涵eRae=0,这里N(R)表示R的幂零元集合;②R为Abel环当且仅当R为幂零自反环和拟Abel环;③设σ为环R的环自同态映射且满足条件:e∈E(R),σ(e)=e,则R为拟Abel环当且仅当R(σ)为拟Abel模.
Let R be a ring and Ma R bimodule. If eR(1-e)Me eM(1-e)Re-O for every element e∈E(R), then M is called quasi-Abel module, where E(R) is the set of all idempotent elements of R. If R as R bimodule is quasi-Abel module, then R is called a quasi-Abel ring. This article proves some main results as follows: ① R is a quasi-Abel ring if and only if for any element a∈N(R), e∈E(R), ea 0 implies eRae=0 ② R is an Abel ring if and only if R is a nilpotent reflexive ring and quasi-Abel ring; ③ Suppose o" is an endomorphism of ring R such that σ(e)=e for any e∈E(R), then R is a quasiAbel ring if and only if R(σ) is quasi Abel module.