本文研究一类整函数系数或亚纯函数系数的复线性差分方程A n(z)f(z+c n)+…+A1(z)f(z+c1)+A0(z)f(z)=0亚纯解的增长性,通过比较系数的(下)级和(下)型得到上述方程亚纯解的级的下界.
In this paper, we investigate the growth of meromorphic solutions of complex linear difference equation A n(z)f(z+c n)+…+A1(z)f(z+c1)+A0(z)f(z)=0 with entire or meromorphic coefficients, and obtain the lower bound of the order of meromorphic solutions of the above equation by comparing the (lower) orders or the (lower) types of the coefficients.