该文主要研究下面非线性Klein-Gordon-Maxwell方程的基态解:{-△u+V(x)u-(2ω+Ф)Фu=a(x)|u|~(p-1)u-b(x)|u|~2u,在R3中△Ф=(ω+Ф)u~2,在R~3中其中,ω是一个常数,且ω〉0,p∈(3,5),u,Ф:R~3→R,V:R~3→R.在对V,a和b的适当假设下,利用山路引理证明了以上Klein-Gordon-Maxwell方程基态解存在.