位置:成果数据库 > 期刊 > 期刊详情页
多核学习融合局部和全局特征的人脸识别算法
  • ISSN号:0372-2112
  • 期刊名称:《电子学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机科学与工程学院,南京210094
  • 相关基金:国家自然科学基金项目(No.61272220),国家自然科学基金重大研究计划项目(No.90820306)资助
中文摘要:

非负矩阵分解(NMF)是一种非常有效的图像表示方法,已被广泛应用到模式识别领域.针对NMF算法是无监督学习算法,无法同时考虑样本类别信息和固有几何结构信息的缺点,提出一种基于图正则化的受限非负矩阵分解(GRCNMF)的算法.该算法利用硬约束保持样本的类别信息,增强算法的鉴别能力,同时还利用近邻图来保持样本间固有的几何结构.通过在COIL20和ORL图像库中的聚类实验结果表明GRCNMF优于其它几种算法,说明GRCNMF的有效性.

英文摘要:

Non-negative matrix factorization (NMF) is an effective image representation method and has considerable attention in pattern recognition. The NMF is an unsupervised learning algorithm which can not take into account the label information and the intrinsic geometry structure simultaneously. In this paper, a matrix decomposition method called graph-regularized constrained non-negative matrix factorization (GRCNMF) is proposed, which preserves the label information with resorting to hard constraints, and hence the discriminating ability is improved. Meanwhile, a neighbors graph preserves the intrinsic geometrical structure of the data. The clustering experiments on the COIL20 and ORL image database demonstrate the effectiveness of the GRCNMF compared to other approaches.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:郝跃
  • 地址:北京165信箱
  • 邮编:100036
  • 邮箱:new@ejournal.org.cn
  • 电话:010-68279116 68285082
  • 国际标准刊号:ISSN:0372-2112
  • 国内统一刊号:ISSN:11-2087/TN
  • 邮发代号:2-891
  • 获奖情况:
  • 2000年获国家期刊奖,2000年获国家自然科学基金志项基金支持,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:57611