设k_(ij)(1≤i〈j≤n)是给定的正整数,分别记G={ (1 k12a12…k1na1n 0 1…k2na2n…… 0 0…1 )|aij∈Z},R={ (0 k12a12…k1na1n……0 0…k2na2n 0 0…1 )|aij∈Z},本文证明:当G成群且G的上、下中心群列重合时,其相伴Lie环L(G)与Lie环R同构,其中R的Lie积定义为[A,B]=AB-BA.即得到了此时L(G)的矩阵表示.
Let Tr1(n,Z) be the group of all n x n(upper) unitriangular matrices over the integral ring.Let kij(1≤i≤j≤n) be given positive integers and G={ (1 k12a12…k1na1n 0 1…k2na2n…… 0 0…1 )|aij∈Z},R={ (0 k12a12…k1na1n……0 0…k2na2n 0 0…1 )|aij∈Z}, If G is a subgroup of Tr1(n,Z),an d its upper central series coincides with its lower central series,then the associated Lie ring L(G) of G is isomorphic to the Lie ring R,where the Lie product of A,B is defined as[A,B]= AB - BA for arbitrary two elements A and B of R.That is to say,we obtain the matrix representation of L(G).