位置:成果数据库 > 期刊 > 期刊详情页
基于图像分解的人脸特征表示
  • ISSN号:1000-9825
  • 期刊名称:软件学报
  • 时间:2014.9.15
  • 页码:2102-2118
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]软件工程国家重点实验室武汉大学计算机学院,湖北武汉430072, [2]沈阳航空航天大学计算机学院,辽宁沈阳110136
  • 相关基金:国家自然科学基金(60975050,60902053,61170185);广东省省部产学研结合专项资金(2011B090400477);珠海市产学研合作专项资金(2011A050101005,2012D0501990016);珠海市重点实验室科技攻关项目(2012D0501990026)
  • 相关项目:音乐舞蹈视频中音乐-动作片段识别方法的研究
中文摘要:

提出一种基于图像分解的人脸特征表示方法(FRID),首先通过多方向操作,把一幅图像分解成一系列方向子图像;然后,通过欧拉映射操作,把每幅方向子图像分解成实部和虚部图像,针对每幅实部和虚部图像,分别划分出多个不重叠的局部图像块,通过统计图像块上不同数值的个数生成相应的实部和虚部直方图,一幅图像的所有实部和虚部直方图被串联成一个超级特征向量;最后,利用线性判别分析方法对超级特征向量进行维数约简,以获得每幅图像的低维表示。实验显示该方法在多个人脸数据库上获得了优于时新算法的识别结果,并且表现得更为稳定。

英文摘要:

This paper presents a face feature representation method based on image decomposition (FRID). FRID first decomposes an image into a series of orientation sub-images by executing multiple orientations operator. Then, each orientation sub-image is decomposed into a real part image and an imaginary part image by applying Euler mapping operator. For each real and imaginary part image, FRID divides them into multiple non-overlapping local blocks. The real and imaginary part histograms are calculated by accumulating the number of different values of image blocks respectively. All the real and imaginary part histograms of an image are concatenated into a super-vector. Finally, the dimensionality of the super-vector is reduced by linear discriminant analysis to yield a low-dimensional, compact, and discriminative representation. Experimental results show that FRID achieves better results in comparison with state-of-the-art methods, and is the most stable method.

同期刊论文项目
期刊论文 33 会议论文 9
期刊论文 24 获奖 3 专利 1
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609