尝试将盲源分离技术用于地球化学领域中,应用盲源分离理论中的FastICA算法对西藏洞嘎普铜矿勘查区1∶10 000土壤地球化学测量数据进行了矿致异常识别研究。首先根据盲源分离算法建立反演化探数据元素组合模型,以此确定地球化学成矿元素组合;然后,利用分形方法确定地球化学单元素及元素组合的异常下限,圈定异常浓集中心,进而确定异常分带性;最后,将元素分带特性研究与研究区地质特征相结合,对比单元素异常图及组合异常图,对研究区的地球化学元素作出异常分类和异常评价解释,划分的4个异常区域在后期的工程验证中取得了很好的效果。
The paper first attempts to use blind source separation technique for geochemical field,and uses FastICA algorithm in the theory of blind source separation for the study of ore-forming anomaly identification of 1∶ 10,000 soil geochemical survey data in Dong Gapu copper exploration area,Tibet.First,we established the anti-combination model of the evolution of geochemical data elements based on blind source separation algorithm in order to determine the geochemistry of combined ore-forming elements.Then,we determined the single-element geochemical anomalies and elemental composition of the lower limit,the delineation of abnormal concentration centers using fractal method,and determine the abnormal zonation.Finally,we combined the elemental characteristics of the study area with geological features,compare single-element anomaly map and the combination of anomaly,and explain the anomaly classification and anomaly evaluation of geochemical elements of the study area.Division of four anomalous areas in the latter part of the validation project achieved good results.