为高度维的 integrable 非线性的动态系统,有丰富的协调 soliton 刺激。在一条改进射影的 Riccati 方程途径的帮助下,纸获得的准确答案的几种类型(2+1 ) 维的 dispersivelong 波浪方程包括 multiple-soliton 答案,周期的 soliton 答案, andWeierstrass 功能答案。从这些答案,除了几 multisoliton 刺激,我们由介绍 lower-dimensionalpatterns 的一些类型导出波浪结构的一些新奇特征。
For a higher-dimensional integrable nonlinear dynamical system, there are abundant coherent soliton excitations. With the aid of an improved projective Riccati equation approach, the paper obtains several types of exact solutions to the (2+l)-dimenslonal dispersive long-wave equation, including multiple-soliton solutions, periodic soliton solutions, and Weierstrass function solutions. From these solutions, apart from several multisoliton excitations, we derive some novel features of wave structures by introducing some types of lower-dimensional patterns.