让 G 是有 n 顶点和 m 边的一张简单的图。让的 λ 1,λ 2,... , λ n , 是 G 的毗邻光谱,并且让 μ 1,μ 2,... , μ n 是 G 的拉普拉斯算符光谱。G 的精力是,当 G 的拉普拉斯算符精力被定义为时。让的 γ 1,γ 2,... , γ n 是 Hermite 矩阵 A 的特征值。在这被定义并且调查纸的 Hermite 矩阵的精力。它是 E (G) 和 LE (G) 的自然归纳。因此,关于在统一的精力的所有性质能被处理由他(A) 。
Let G be a simple graph with n vertices and m edges. Let λ1, λ2,…, λn, be the adjacency spectrum of G, and let μ1, μ2,…, μn be the Laplacian spectrum of G. The energy of G is E(G) = n∑i=1|λi|, while the Laplacian energy of G is defined as LE(G) = n∑i=1|μi-2m/n| Let γ1, γ2, ~ …, γn be the eigenvalues of Hermite matrix A. The energy of Hermite matrix as HE(A) = n∑i=1|γi-tr(A)/n| is defined and investigated in this paper. It is a natural generalization of E(G) and LE(G). Thus all properties about energy in unity can be handled by HE(A).