We present an efcient faithful multipartite polarization entanglement distribution protocol over an arbitrary noisy channel.The spatial degree of freedom is used to carry the entanglement during the transmission.We describe the principle by distributing n-qubit Greenberge–Horne–Zeilinger state and n-qubit W state.Our scheme can be used to distribute arbitrary n-qubit entangled states to n distant locations.The remote parties can obtain maximally entangled states deterministically on the polarization of photons.Only passive linear optics are employed in our setup,which makes our scheme more feasible and efcient for practical application in long distance quantum communication.
We present an efficient faithful multipartite polarization entanglement distribution protocol over an ar- bitrary noisy channel. The spatial degree of freedom is used to carry the entanglement during the transmission. We describe the principle by distributing n-qubit Greenberge-Horne--Zeilinger state and n-qubit W state. Our scheme can be used to distribute arbitrary n-qUbit entangled states to n distant locations. The remote parties can obtain maximally entangled states deterministically on the polarization of photons. Only passive linear optics are employed in our setup, which makes our scheme more feasible and efficient for practical application in long distance quantum communication.