位置:成果数据库 > 期刊 > 期刊详情页
基于MLR与LS-SVM的岩石强度预测模型比较
  • ISSN号:1005-2763
  • 期刊名称:《矿业研究与开发》
  • 时间:0
  • 分类:TD313.3[矿业工程—矿井建设]
  • 作者机构:北京科技大学土木与资源工程学院,北京100083
  • 相关基金:国家自然科学基金资助项目(51574015).
作者: 李文, 谭卓英
中文摘要:

以页岩为研究对象,分别采用多元线性回归(MLR)及最小二乘支持向量机(LS—SVM)建立了页岩的单轴抗压强度及抗拉强度预测模型,考虑的间接指标包括:岩石密度、点荷栽强度及纵波波速,并对上述两种预测模型进行了性能检验及比较。结果表明:页岩强度与密度、点荷栽强度、纵波波速呈较好的线性关系,相关系数均大于0.89;MLR和LS—SVM方法均可得到较高精度的强度值,但单轴抗压强度的预测精度比抗拉强度高,更适合于抗压强度的预测。两类模型在预测岩石单轴抗压强度时效果相当,但LS—SVM方法更适合于抗拉强度的预测。

英文摘要:

Taking shale as the research object, considering the rock density, point load strength and P--wave velocity, pre- diction models of uniaxial compressive strength and tensile strength were built by multiple linear regression (MLR) and least squares support vector machine (LS--SVM). And their performances were tested and compared. The results showed that the strength of shale had good linear relations with rock density, point load strength and P--wave velocity, and the correlation coefficients were all greater than 0.89. MLR and LS--SVM could both obtain strength values with high accu- racy. But the prediction accuracy of uniaxial compressive strength was higher than that of tensile strength, which proved that MLR and LS--SVM was much more suitable to predict compressive strength. The performances of two methods were equivalent for predicting compressive strength, while LS--SVM method was much more suitable to predict tensile strength.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《矿业研究与开发》
  • 中国科技核心期刊
  • 主管单位:长江矿山研究院
  • 主办单位:长沙矿山研究院 中国有色金属学会
  • 主编:周爱民
  • 地址:湖南省长沙市麓山南路343号
  • 邮编:410012
  • 邮箱:kyyk81@263.net
  • 电话:0731-8631209 88671578
  • 国际标准刊号:ISSN:1005-2763
  • 国内统一刊号:ISSN:43-1215/TD
  • 邮发代号:42-176
  • 获奖情况:
  • 中国有色金属工业科技期刊三等奖,编排规范执行优秀奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:8623