考虑特征值问题-△pμ=λV(x)|u|^p-2u,u∈W0^1,p(Ω);其中p〉1,△pu是指的是p—Laplacian算子,λ〉0,Ω是R^N中的有界区域,证明了最小的正特征值在给定的区域的严格单调性,获得了几个重要性质.
Consider the eigenvalue problem -△pμ=λV(x)|u|^p-2u,u∈W0^1,p(Ω) where p 〉 1, △ u is p- Laplacian operator, λ 〉 0 ,Ω is a bounded domain in R^N. We prove the strict monotonicity of the least positive eigenvalue with respect to the domin, and obtain some important properties.