针对含变系数的-维抛物型方程,基于 Shishkin网格进行多尺度有限元数值计算,通过在粗网格 上求解微分算子的子问题获得多尺度基函数来捕捉局部振荡信息. 利 用 Shishkin网格分段模拟具有真解 的奇异摄动抛物方程边界层,探讨时间尺度的推移对数值解的稳定性与精确性的影响. 结果表明,该方法 较经典有限元法不但计算精度高、效率高,而且可以节约计算资源,充分发挥其数值优势.