用 RNA-Seq 技术的细菌的 transcriptomes 深定序使识别小非编码的 RNA 可能,响应改变环境调整基因表示的 RNA 分子,在在初核质的 ever-increasingrange 的染色体宽的规模上。然而,为在这些大 datasetsis 识别 sRNA 候选人缺乏的一个简单、可靠的自动化方法。在从 Mycobacterium 肺结核 H37Rv 的一种指数的阶段文化产生 transcriptome 以后,这里,我们为 sRNA 的染色体宽的鉴定开发了并且验证一个自动化方法包含候选人的 regionswithin RNA-Seq 数据集基于特征的分析读范围地图。我们在 intergenic 区域识别了 192 个新奇编码 candidatesRNA 区域 ? 并且 664 个 RNA 抄本从区域 antisense 抄录了(作为) 打开 readingframes (ORF ) ,它忍受 asRNAs 的特征,并且验证了这些中的 28 个由 northernblotting 的新奇编码 sRNA 区域。我们的工作不仅在 RNA-Seq 数据为候选人 sRNA-encodingregions 的染色体宽的鉴定提供了一个简单自动化方法,而且也揭开了在 M 的许多新奇候选人编码 sRNA 区域。肺结核,增强在细菌的基因表示的控制是更多的建筑群比的看法以前期望了。
Deep-sequencing of bacterial transcriptomes using RNA-Seq technology has made it possible to identify small non-coding RNAs, RNA molecules which regulate gene expression in response to changing environments, on a genome-wide scale in an ever-increasing range of prokaryotes. However, a simple and reliable automated method for identifying sRNA candidates in these large datasets is lacking. Here, after generating a transcriptome from an exponential phase culture of Mycobacterium tuberculosis H37Rv, we developed and validated an automated method for the genome-wide identification of sRNA candidate-containing regions within RNA-Seq datasets based on the analysis of the characteristics of reads coverage maps. We identified 192 novel candidate sRNA-encoding regions in intergenic regions and 664 RNA transcripts transcribed from regions antisense (as) to open reading frames (ORF), which bear the characteristics of asRNAs, and validated 28 of these novel sRNA-encoding regions by northern blotting. Our work has not only provided a simple automated method for genome-wide identification of candidate sRNA-encoding regions in RNA-Seq data, but has also uncovered many novel candidate sRNA-encoding regions in M. tuberculosis, reinforcing the view that the control of gene expression in bacteria is more complex than previously anticipated.