通过实验研究不凝结气体(空气)对蒸汽浸没射流压力振荡特性的影响。结果表明:不凝结气体存在时压力振荡强度比纯蒸汽浸没射流时明显减小。随空气质量分数的增加,压力振荡峰值的位置沿轴向后移。过冷水温低于45℃时,峰值随空气质量分数的增加而增大;高于50℃时,随空气质量分数的增加而减小;水温在45~50℃之间时,峰值大致相同。压力振荡主频随空气质量分数、蒸汽质量流率和过冷水温度的增加而减小。
Effect of non-condensable gas on pressure oscillation of submerged steam jet is studied experimentally. With the presence of non-condensable gas, the pressure oscillation intensity reduces significantly compared with that of pure steam. As the air mass fraction increases, the axial position of pressure oscillation peak shifts downstream. The oscillation intensity peak value increases with the air mass fraction when the water temperature is below 45 ℃, while it decreases when the water temperature is higher than 50 ℃. When the water temperature is within the range between 45 and 50 ℃, the peak value of oscillation intensity is almost invariant with the air mass fraction. Furthermore, the oscillation frequency decreases with the increase of the air mass fraction, steam mass flux, and subcooled water temperature.