研究了具有时变时滞与多数据包丢失的网络控制系统(networked control systems,NCSs)的量化H_∞控制问题.同时考虑传感器-控制器间的测量通道及控制器-执行器间的控制通道的多数据包丢失,并将其用满足Bernoulli分布的随机变量来表示.控制输入信号和测量输出信号分别在传感器和控制器两侧进行对数量化,量化误差描述为扇区有界不确定性.利用Lyapunov理论和线性矩阵不等式方法,得到了使得闭环NCSs满足一定H_∞性能指标的均方意义下指数稳定充分条件,并给出了基于观测器的时滞相关控制器设计方法.最后,通过实例证明了该方法的有效性.
This paper is concerned with the problem of quantized H-infinity control for networked control systems (NCSs) with time-varying delay and multiple packet dropouts.The packet dropouts in both the measurement channel and the control channel are considered simultaneously,and are modeled as stochastic variables with Bernoulli random binary distribution.Both the control input and measurement output are quantized before transmission and the quantization errors are described as sector-bound uncertainties.Sufficient conditions for the existence of an observer-based,delay-dependent controller are developed to ensure the exponentially mean-square stability of the closed-loop system and to achieve the optimal H-infinity disturbance attenuation.A numerical example is given to illustrate the effectiveness of the proposed method.